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Trapped acoustic modes in aeroengine intakes
with swirling flow
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A theoretical model of an aeroengine intake–fan system is developed in order to show
the existence of acoustic resonance in the intake. In general this phenomenon can be
linked to instabilities in aircraft engine inlets.

The model incorporates a slowly varying duct intake and accounts for the swirling
flow downstream of the fan. The slow axial variation in cross-section gives rise to
turning points where upstream-propagating acoustic modes are totally reflected into
downstream-propagating modes. The effect of the swirling flow downstream can be
to cut off a mode which is cut on upstream of the fan. It is shown that these two
aspects of the flow, coupled with the effects of the fan (represented by an actuator
disc), can lead to acoustic modes becoming trapped in the intake, thus giving rise to
pure acoustic resonance.

A whole range of system parameters, such as axial, fan and swirl Mach numbers,
which satisfy the conditions for resonance are identified. The effects of a stationary
blade row behind the fan are also considered leading to a second family of resonant
states. In addition we find resonance due to reflection of acoustic modes at the open
(inlet) end of the duct.

1. Introduction
The continuing development of larger aeroengines and the wider range of conditions

over which they are required to operate has created a number of urgent design issues.
One concern is the possible excitation of fluid-dynamical and acoustic instabilities
within the engine, which if allowed to develop can have potentially serious operational
consequences, with the effect of compromising the (design) operating range of the
engine. This would lead to significant degradation in performance and potentially
necessitate costly engine redesign.

Here we address one such instability which is of considerable practical interest
and concern, namely the aeroacoustic coupling between the intake geometry/flow
and the fan, which can potentially be linked to flutter and/or rotating stall in the
fan. This form of instability typically occurs in the mid-range of Mach numbers
(0.3–0.6) and is a relatively low-frequency phenomenon (200–600 Hz) with acoustic
wavelengths taking values of the order of the fan radius. In this paper a theoretical
model is developed to predict the conditions for instability across a range of operating
conditions (which may provide information that could be used at an early stage in
the design process).

Variation in the cross-sectional shape of the nacelle is a crucial factor in generating
instabilities, and our model therefore includes an axisymmetric duct which varies
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slowly in the axial direction to represent the intake. In hard-walled ducts with varying
cross-section, turning points can arise within the duct, corresponding to points where
a mode changes from being cut on to cut off. Thus an upstream-propagating acoustic
mode must be reflected into a downstream-propagating mode at a turning point.
Swirling flow behind the fan can also play a role in generating the instability, since
modes which are cut on ahead of the fan can be cut off by the mean swirl behind the
fan, providing a potential mechanism for the reflection of incident acoustic waves at
the fan. Thus the combination of swirling flow behind the fan and the existence of
turning points upstream of the fan leads to the possibility of acoustic modes becoming
trapped in the intake, giving rise to pure acoustic resonance and the development of
a large-amplitude, saturated-state oscillation.

An actuator disc, a theoretical tool which provides jump conditions in flow prop-
erties, is used to represent the effect of the fan. Actuator discs have been used widely
to represent blade rows in internal flows, and many applications are described in
Horlock (1978). We will be concerned here only with modes of low azimuthal order,
and for these modes it is believed that the actuator disc model is entirely adequate.
Flow quantities, such as mass flow and radial velocity, are conserved on either side
of the fan and provide boundary conditions which are applied across the actuator
disc.

Various aspects related to this investigation have been considered previously. Work
on acoustic flow in slowly varying ducts using the WKB technique has been carried
out by Nayfeh, Shaker & Kaiser (1980) and Nayfeh & Telionis (1973). Howe &
Liu (1977) have considered noise generation in an axisymmetric duct which varies in
cross-sectional area, and Eversman & Astley (1981) and Astley & Eversman (1981)
describe numerical work on general area variation. Recently Rienstra (1999) carried
out an explicit multiple-scales analysis of a slowly varying cylindrical duct with mean
flow. The question of resonance, however, particularly in view of the novel end
condition provided by the fan, has not been addressed.

The effect of mean swirling flow in ducts on the propagation of small disturbances
was first analysed by Kerrebrock (1977). This work has been extended by Golubev
& Atassi (1995, 1996, 1998) who studied the effects of mean potential swirling flow,
and a more general swirl profile defined in terms of rigid-body rotation and a free
vortex, in annular ducts. This has also been considered by Tam & Auriault (1998).
Using a normal-mode analysis, mean swirling flow was shown to couple acoustic
and vorticity modes, and give rise to pressure-dominated nearly sonic waves and
vorticity-dominated nearly convected modes.

There is a substantial body of work concerning the existence of trapped modes and
the occurrence of acoustic resonance. Evans, Levitin & Vassiliev (1994) provided the
first general existence proof for modes trapped by an obstacle in a two-dimensional
waveguide. Subsequent work on mode trapping by obstacles in ducts is described
in Evans & Linton (1994) and Linton & McIver (1998 a, b). Also related is work
on the existence of water-wave trapping by rigid bodies (see Evans & Linton 1991).
Early work in the area of acoustic resonance and blade rows was undertaken by
Parker (1966, 1967) where both theoretical prediction and experimental verification
of trapped modes was obtained. Recently Woodley & Peake (1999 a, b) investigated
the existence of trapped acoustic modes in a system of twin blade rows, or cascades,
which is related to acoustic resonance in aeroengine compressors. The importance
of acoustic resonance from a practical viewpoint is reviewed by Parker & Stoneman
(1989), which details other areas of the aeroengine where the effects of acoustic
resonance may be significant.
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Figure 1. Schematic of duct–fan region. Upstream of the fan (located at Xf = 2.619) the duct
is slowly varying with duct walls defined by R1(X), R2(X). The mean flow is defined by an axial
Mach number Mx(X). Acoustic perturbations are represented by p(1)

u (upstream propagating) and

p
(1)
d (downstream propagating). Fan speed is expressed in terms of a blade Mach number Mb.

Downstream of the fan the mean flow consists of uniform axial flow (Mf
x ) and a rigid-body rotation

(MΩ). Downstream-propagating coupled acoustic-vorticity perturbations are represented by p(2)
d and

v
(2)
d .

2. Modelling the intake–fan system
A clean axisymmetric aeroengine intake is represented by a cylindrical duct with

slowly varying cross-section. The duct is hollow at the inlet and undergoes a transition
to an annular duct as the fan is approached, thus modelling the presence of a spinner.
The flow within the duct is taken to consist of a steady mean flow with unsteady
acoustic perturbations. The steady flow into the duct is axisymmetric and governed
by the compressible Euler equations with slow axial variation. The unsteady flow is
then treated as a small linearized perturbation to the mean flow. A schematic of the
intake–fan system and swirling flow region is shown in figure 1.

At the fan the duct is assumed to be locally parallel with uniform steady axial
flow into the fan. Downstream of the fan the duct remains parallel and the mean
flow has an additional swirling (azimuthal) component. The fan itself is modelled
by an actuator disc which provides appropriate boundary (or jump) conditions, and
couples the flow upstream and downstream of the fan. In the region upstream of
the fan it is assumed that the steady flow is irrotational and that both upstream-
and downstream-propagating acoustic modes exist. Behind the fan the swirl gives rise
to coupled acoustic–vorticity modes (Golubev & Atassi 1998) and only those which
propagate in the downstream direction are assumed to be present (this assumption
will need to be relaxed when we include another blade row downstream).

The analysis of Rienstra (1999) for sound propagation in a slowly varying cylindrical
duct is used to determine where acoustic modes are cut on and cut off upstream of
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the fan. The variation in cross-sectional area of the duct means that turning points
can exist within the inlet duct, where an upstream-propagating cut-on mode is totally
reflected into a downstream-propagating cut-on mode. Following Golubev & Atassi
(1998) it is shown here that a mode which is cut on at the fan can be cut off by
the swirling flow behind it, so that at the fan an incident downstream-propagating
mode may be reflected back into upstream-propagating modes. We therefore have
the possibility of modes becoming trapped within the duct between the turning point
location and the fan, generating pure acoustic resonance. The Rienstra analysis is
used to determine the frequencies which give rise to turning points within the duct,
and the actuator disc calculation, which couples the flow upstream and downstream
of the fan, is then used to determine the parameters which allow trapped or resonant
modes to exist.

Another mechanism for the possible containment of acoustic modes is the reflection
of a cut-on mode at the open end of the duct. This case is also considered and uses
reflection coefficients for the reflection of an incident acoustic mode at the open end of
a cylindrical duct, which are calculated using the Wiener–Hopf technique (see Levine
& Schwinger 1948). The presence of a stationary blade row (stator, or Outlet Guide
Vanes) is also considered by the inclusion of a second actuator disc downstream
which returns the steady flow to being purely axial.

3. Theory
3.1. Slowly varying cylindrical duct

Consider a hard-walled cylindrical duct, with cylindrical coordinate system (x, r, θ),
which has slowly varying cross-section. In a study of the transmission of sound in a
slowly varying duct, Rienstra (1999) used the method of multiple scales to account for
the variation in duct shape, and that formulation is followed here. A small parameter
ε is introduced to define a slow axial scale X, such that X = εx (ε is of the order
of the axial slope of the duct walls). The inner radius of the duct, R1, and the outer
radius, R2, are then defined as functions of X.

A nearly uniform mean flow of the form

V = U(X, r; ε)ex + V (X, r; ε)er (1)

is assumed, and mean flow quantities are expanded in powers of ε as

U(X, r; ε) = U0(X) + O(ε2), V (X, r; ε) = εV1(X, r) + O(ε3), (2)

P (X, r; ε) = P0(X) +O(ε2), D(X, r; ε) = D0(X) +O(ε2), C(X, r; ε) = C0(X) +O(ε2),
(3)

where P is the mean pressure, D the mean density and C the speed of sound.
Throughout lengths are non-dimensionalized by Rm, the average of the inner and
outer duct radii at the fan, velocities by a reference sound speed c∞, density by ρ∞
and pressure by ρ∞c2∞. The leading-order terms U0 and hence P0, C0, D0 and V1 are
given exactly in Rienstra (1999). The local axial Mach number along the duct is given
by Mx(X) = U0(X)/C0(X).

The acoustic field is expressed in terms of a potential with slowly varying amplitude
and axial and radial wavenumbers in the form

φ(x, r, θ, t; ε) = A(X, r; ε) exp

(
iωt− imθ − i

ε

∫ X

µ(ξ)dξ

)
. (4)
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By expanding the amplitude of the potential in powers of ε, such that

A(X, r; ε) = A0(X, r) + εA1(X, r) + · · · , (5)

and equating like powers of ε, the leading-order amplitude, A0, is determined by
Rienstra in the form

A0(X, r) = N(X)Jm(α(X)r) +M(X)Ym(α(X)r), (6)

where

α2 =
Λ2

C2
0

− µ2, (7)

Λ = ω − µU0. (8)

Jm and Ym are mth-order Bessel functions of the first and second kinds respectively,
and N(X) and M(X) are arbitrary functions. The radial eigenvalues α(X), and hence
from (7) the axial wavenumbers µ(X), are found by applying the boundary conditions
of zero radial velocity on the walls

∂A0

∂r
= 0 at r = R1(X), R2(X). (9)

By eliminating M(X) the following dispersion relation for α(X) is obtained:

J ′m(αR1)Y
′
m(αR2)− J ′m(αR2)Y

′
m(αR1) = 0, (10)

where the prime denotes differentiation with respect to the argument. With α(X)
determined, M(X) and N(X) are related by

M(X) = −N(X)
J ′m(αR2)

Y ′m(αR2)
, (11)

which then leaves A0 in terms of one arbitrary function of X.
From (7) it is clear that for each α there are two allowed values of µ, which give rise

to upstream- (µ−) and downstream- (µ+) propagating waves. Modes with Im(µ) = 0
are referred to as cut on and those with Im(µ) 6= 0 as cut off. For a given m there are
generally a finite number of cut-on modes and an infinite discrete set of cut-off (or
evanescent) modes (these are non-propagating in the frame of reference moving with
the mean axial velocity). A typical eigenvalue spectrum is shown in figure 2.

At the fan location (x = xf , or equivalently X = Xf), the duct is assumed to be
locally parallel, so that the solution there can be written as

φm(x, r, θ; t) =

∞∑
n=1

{
Aumne

−iµ−mn(x−xf ) + Admne
−iµ+

mn(x−xf )
}
Cm(αmnr)e

i(ωt−mθ), (12)

where Aumn and Admn are coefficients of the upstream-and downstream-propagating
waves respectively, and Cm(z) = Jm(z)− {J ′m(αmnrt)/Y

′
m(αmnrt)}Ym(z), with rt = R2(Xf);

m and n are integers labelling the circumferential and radial modes respectively. From
(7) the wavenumbers µ±mn at the fan are given by

µ±mn =
−k0M

f
x ±

√
k2

0 − α2
mn(1−Mf2

x )

1−Mf2
x

, (13)

where k0 = ω/C0(Xf) and Mf
x = Mx(Xf) is the Mach number at the fan location.
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Figure 2. Eigenvalues µmn (pressure modes) for non-swirling flow with m = 2, ω = 8.16,
Mf

x = 0.4292, rh = 0.59488, rt = 1.4046. The single vorticity mode is located at 19.01 on the real
axis.

3.2. Uniform swirling flow

Behind the fan the duct is taken to be a uniform cylindrical annulus of dimension
R1(Xf) = rh6 r6 rt = R2(Xf), with a swirling mean flow consisting of a uniform axial
flow and rigid-body rotation such that

V = U
f
0 ex + Ωreθ, (14)

where Uf
0 = U0(Xf). The mean density D = ρ0(r) satisfies

1

γ − 1

∂ρ0

∂r
= Ω2r, (15)

where γ is the ratio of specific heats.
This type of mean swirling flow has been studied by Golubev & Atassi (1998) and

Tam & Auriault (1998). Due to the presence of mean swirling flow behind the fan, the
linearized Euler equations for small-amplitude perturbations to the three unsteady
velocity components and pressure, (ux, ur, uθ, p), form the set of coupled equations

1

C2
0

(
∂p

∂t
+U

f
0

∂p

∂x
+ Ω

∂p

∂θ

)
+ ρ0

(
∂ux

∂x
+
∂ur

∂r
+
ur

r
+

1

r

∂uθ

∂θ

)
+
∂ρ0

∂r
ur = 0, (16)

ρ0

(
∂ux

∂t
+U

f
0

∂ux

∂x
+ Ω

∂ux

∂θ

)
= −∂p

∂x
, (17)

−Ω
2r

C2
0

p+ ρ0

(
∂ur

∂t
+U

f
0

∂ur

∂x
+ Ω

∂ur

∂θ
− 2Ωuθ

)
= −∂p

∂r
, (18)

ρ0

(
∂uθ

∂t
+U

f
0

∂uθ

∂x
+ Ω

∂uθ

∂θ
+ 2Ωur

)
= −1

r

∂p

∂θ
. (19)
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The perturbation velocity u = (ux, ur, uθ) is decomposed into potential and vortical
parts such that

u = ∇φ+ a, (20)

and the pressure perturbation is then expressed solely in terms of the potential

p = −ρ0

(
∂

∂t
+ V · ∇

)
φ. (21)

Following Golubev & Atassi (1998) a normal-mode analysis is used to express the
vortical velocity and potential in the form

{ax, ar, aθ, φ}(x, r, θ; t) =

∫ ∞
−∞

∞∑
m=−∞

∞∑
n=1

{Xmn(r), Rmn(r), Tmn(r), φmn(r)}

× exp{i(ωt− mθ − kmn(x− xf))} dω, (22)

and since the problem is linear each Fourier component can be considered separately.
The pressure modes are given by

pmn(r) = −iρ0(r)Λmnφmn(r), (23)

where

Λmn = ω − kmnUf
0 − mΩ. (24)

Using the expansion in (22), equations (16)–(19) become

∂2φmn(r)

∂r2
+

(
1

r
+

1

ρ0

∂ρ0

∂r

)
∂φmn(r)

∂r
+

(
Λ2
mn

C2
0

− k2
mn − m2

r2

)
φmn(r)

+

(
1

r
+

1

ρ0

∂ρ0

∂r

)
Rmn(r) +

∂Rmn(r)

∂r
− im

r
Tmn(r)− ikmnXmn(r) = 0, (25)

ΛmnXmn(r) = 0, (26)

ΛmnRmn(r) + 2iΩTmn(r) + 2Ω
m

r
φmn(r) = 0, (27)

ΛmnTmn(r)− 2iΩRmn(r)− 2iΩ
∂φmn(r)

∂r
= 0. (28)

When Ω 6= 0 the presence of Coriolis forces prevents the existence of the purely
convected solution given by Λmn = 0, so that we must have Xmn(r) = 0 from (26). As
in Golubev & Atassi (1998) the remaining coupled equations are written in the form
of a generalized eigenvalue problem

BΥ = kmnΥ, (29)

where Υ = [φmn, ηmn, Rmn, Tmn] and ηmn = kmn{1 − (Uf
0/C0)

2}φmn. The system of equa-
tions in (29) are solved numerically using a Chebyshev spectral-collocation method
as in Khorrami (1991), with boundary conditions

∂φmn

∂r
+ Rmn = 0 at rh, rt. (30)

Since the presence of swirl couples the potential and vorticity equations, the
eigenvalue relation produces two distinct sets of eigenvalues, and the corresponding
eigenvectors are coupled acoustic–vorticity modes. One set of eigenmodes propagates
with phase speeds close to the speed of sound and is sustained by compressibility
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Figure 3. Eigenvalues kmn for swirling flow with m = 2, ω = 8.16, Mf
x = 0.4292, MΩ = 0.525,

rh = 0.59488, rt = 1.4046. Circles denote pressure-dominated modes and crosses the rotational
(vorticity-dominated) modes.

effects. This set is referred to by Golubev & Atassi (1998) as pressure-dominated
modes, and consists of upstream- and downstream-propagating cut-on modes and an
infinite discrete set of cut-off modes. The second set of eigenmodes is nearly con-
vected, vorticity dominated and often referred to as rotational modes. This family of
eigenmodes consists of two branches of eigenvalues (left and right) which asymptoti-
cally approach a singular point (given by Λmn = 0) corresponding to pure convection.
A typical eigenvalue spectrum is shown in figure 3. By comparing figures 2 and 3 it
can be seen that some of the modes which are cut on in the absence of mean swirl
become cut off when Ω 6= 0. It will be seen that it is this effect which is crucial in
generating acoustic resonance in the intake.

At higher values of Ω the numerical scheme cannot resolve accurately all of
the rotational modes and produces spurious roots which change value with the
number of collocation points used. Since these modes are maintained by mean swirl
(and not compressibility effects), they are determined by assuming constant density.
This approximation is supported by Tam & Auriault (1998) who demonstrated that
compressibility effects had only a minor influence on these modes. The pressure-
dominated modes are determined throughout by solving the full set of equations.
This produces a robust numerical scheme for determining all the eigenvalues and
eigenvectors.

The velocities and pressure are expressed as

ur =
∑
τ

∞∑
n=1

Aτn

{
∂φτn
∂r

+ Rτn

}
, (31)

uθ =
∑
τ

∞∑
n=1

Aτn

{−imφτn
r

+ Tτ
n

}
, (32)
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ux =
∑
τ

∞∑
n=1

Aτn{−ikτnφ
τ
n}, (33)

p =
∑
τ

∞∑
n=1

Aτn{−iΛτnφ
τ
n}, (34)

with a factor exp{i(ωt−mθ)−ikτn(x−xf)} understood throughout.
∑

τ is used to denote
the sum over the modes p, l and r, where superscript p denotes the pressure-dominated
solution and superscripts l and r the left- and right-hand branches respectively of the
rotational modes. The subscript m has been dropped for clarity.

3.3. Actuator disc representation of the fan

The rotating fan is modelled by placing an actuator disc inside the duct at x = xf ,
which turns the flow and simulates jump conditions in flow properties. The unknown
constants in the two flow regions are related through the jump conditions across
the disc, corresponding to conservation of mass flow, conservation of radial velocity,
conservation of rothalpy (total enthalpy in relative frame) and the Kutta condition
of smooth flow at each trailing edge.

The region upstream of the fan is denoted region 1, and that downstream of the
fan region 2. It is assumed that there exist incident acoustic waves and possible
upstream-reflected waves in region 1, and in region 2 there may exist downstream-
propagating acoustic-type waves and nearly convected vorticity-dominated waves.
Using the notation in figure 1 (i.e. superscripts (1) and (2) to denote the unsteady
flow fields in regions 1 and 2 respectively) the (linearized) mass and radial velocity
jump conditions at the actuator disc are

Mf
xp

(1)

C0(Xf)
+ D0(Xf)u

(1)
x =

Mf
xp

(2)

C0

+ ρ0u
(2)
x , (35)

u(1)
r = u(2)

r . (36)

If the fan rotates with angular frequency W , then the rothalpy I is defined as

I =

(
γ

γ − 1

)
p

ρ
+ 1

2

{
V 2
x + V 2

r + (Vθ − rW )2
}− 1

2
r2W 2, (37)

where (Vx, Vr, Vθ) is the total velocity field. The linearized jump condition expressing
conservation of rothalpy then becomes

p(1)

D0(Xf)
+ C0(Xf){Mf

xu
(1)
x − rMbu

(1)
θ }= p(2)

ρ0

+ C0{Mf
xu

(2)
x + r(MΩ −Mb)u

(2)
θ }, (38)

where MΩ = ΩRm/(C0(Xf)c∞) is the swirl Mach number, and Mb = WRm/(C0(Xf)c∞)
is the fan, or blade, rotational Mach number at the duct mean radius. The Kutta
condition states that both the steady and unsteady flows must be aligned with the
blades at the trailing edges. If the blades are inclined at an angle α to the axial flow
at the trailing edge, then

tan α =
r(MΩ −Mb)

M
f
x

=
u

(2)
θ

u
(2)
x

, (39)

which leads to the condition

Mf
xu

(2)
θ = r(MΩ −Mb)u

(2)
x . (40)
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Using the solution (12) for region 1 and the solutions (31)–(34) in region 2, the
conditions at the actuator disc are expressed in terms of Bessel functions, unknown
coefficients and system parameters. For example, the mass flow condition (35) becomes∑

n

(Q−n A
u
n + Q+

n A
d
n)Cm(αnr) =

∑
n

qpnA
p
nφ

p
mn(r) + qlnA

l
nφ

l
mn(r) + qrnA

r
nφ

r
mn(r), (41)

where

Q±n = −iMf
x

{
ω

C0(Xf)
−Mf

xk
±
n

}
− ik±n D0(Xf), (42)

qτn = −iMf
x

Λτn
C0

− ikτnρ0. (43)

This can be transformed into a matrix equation by multiplying both sides by rCm(αjr),
integrating from rh to rt, and using the identity∫

rCm(αjr)Cm(αnr)dr =
1

2

(
r2 − m2

α2
j

)
C2
m(αjr) if j = n

= 0 if j 6= n.

The matrix equation resulting from (41) is

R(Q−Au + Q+Ad) = HpAp + H lAl + H rAr, (44)

where A = [A1, A2, . . .] for each set of coefficients. The matrices R ,Q± and qτ are
diagonal with (no summation over repeated suffices)

Rjj =

[
1

2

(
r2 − m2

α2
j

)
C2
m(αjr)

]rt
rh

, (45)

Q±jj = Q±j , (46)

qτjj = qτj , (47)

and

H
p
jn =

∫ rt

rh

rCm(αjr)φ
p
mn(r)q

p
ndr, (48)

with H l and H r defined in a similar manner.
Matrix equations for the remaining three conditions are formed by applying the

same process to (36), (38) and (40), and can be written as

(S−Au + S+Ad) = BpAp + B lAl + B rAr, (49)

R(Au + Ad) = PpAp + P lAl + PrAr, (50)

0 = V pAp + V lAl + V rAr. (51)

The resulting set of four simultaneous equations is manipulated to eliminate Ap,Al

and Ar , leaving a condition relating the amplitudes of the upstream-propagating
modes ahead of the fan, Au, and the amplitudes of the downstream-propagating
modes ahead of the fan, Ad, which can be expressed in the form

Au = MAd, (52)

so that M can be thought of as a matrix of reflection coefficients. Ad contains only the
coefficients of downstream-propagating cut-on modes, but both cut-on and cut-off
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modes are included in the vector Au. This is because although the cut-off modes
will decay as they propagate away from the fan, their contribution to the boundary
conditions at the fan may be significant.

4. Acoustic resonance in the intake
We now define a condition which allows unforced acoustic resonance to exist. We

concentrate on the case when there is, at most, a single cut-on mode at any point
along the duct, and where there is precisely one cut-on mode at the fan face. This
assumption is justified by the fact that the frequency ranges for which resonance may
occur are characteristic of blade flutter, which is typically a relatively low-frequency
phenomenon. Turning points can arise in the duct due to the slow changes in cross-
sectional area, and are identified as points where the reduced axial wavenumber,

σ± = ±
√

1− C2
0 (1−M2

x)
α2

ω2
, (53)

passes through zero, to go from being purely real (cut on) to purely imaginary (cut
off) or vice versa. Eigenvalue calculations for a slowly varying duct typically indicate
the presence of one or two turning points within the inlet duct (possibly even more
depending on flow conditions). For a given mass flux, the number and location of
turning points depends on the frequency parameter ω. Figure 4 shows examples of
how the reduced axial wavenumber σ±(X) varies with frequency for a given duct
shape. A typical pattern is that a mode becomes cut on at the fan face and a single
turning point is present upstream. As the frequency is increased the location of the
turning point moves upstream, and increasing the frequency further gives rise to a
second turning point between the open end of the duct and the first turning point.
The two turning points then move towards each other, and finally merge to produce
a mode which is cut on along the entire length of the duct. As the frequency is
increased further a second mode becomes cut on at the fan.

In general, for any number of turning points, the condition relating the amplitudes
of upstream- and downstream-propagating waves at the turning point nearest to the
fan can be written

Ad(Xt) = RAu(Xt), (54)

where R is the reflection coefficient at the turning point and Xt is the location of the
turning point. If the mode is cut on along the whole length of the duct then Xt is
taken to be the location of the open end.

As the waves propagate along the duct their amplitudes Ad(X) and Au(X) are
related to the values at the turning point by some factor T (X) as given in Rienstra
(1999). Thus the right- and left-propagating waves at any position X downstream of
the turning point are given by

Ad(X) exp

(
− i

ε

∫ X

Xt

µ+(y)dy

)
= T (X)Ad(Xt) exp

(
− i

ε

∫ X

Xt

µ+(y)dy

)
, (55)

Au(X) exp

(
− i

ε

∫ X

Xt

µ−(y)dy

)
= T (X)Au(Xt) exp

(
− i

ε

∫ X

Xt

µ−(y)dy

)
. (56)

At the actuator disc the duct is assumed to be locally parallel, and a local expansion
of the above expressions about the fan position Xf produces expressions for the
incoming and reflected waves which are in the same form as that used for the
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Figure 4. Variation in the real part of the reduced axial wavenumber, σ, along a slowly varying
duct. Solid lines represent right-propagating modes and dashed lines left-propagating modes; modes
are cut off when σr = 0. (a) ω = 2.0, (b) ω = 2.2, (c) ω = 2.4.

actuator disc calculation. Therefore, at the fan location we have

Ad(Xf) = T (Xf)P
+Ad(Xt), (57)

Au(Xf) = T (Xf)P
−Au(Xt), (58)

where

P± = exp

(
− i

ε

∫ Xf

Xt

µ±(y)dy

)
. (59)

The expression relating right- and left-propagating modes at the fan is given by
(52), which since we only consider a single incident (cut-on) mode, can be written as
the scalar expression

Au(Xf) = MAd(Xf), (60)

where M = M11. Combining equations (54), (57), (58) and (60) gives

[1−MP+(P−)−1R]Au(Xf) = 0, (61)

and the resonance condition (i.e. the existence of a non-trivial solution for Au(Xf)) is
therefore

1−MP+(P−)−1R = 0, (62)
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or

M =
1

R
exp

(
− i

ε

∫ Xf

Xt

[µ−(y)− µ+(y)]dy

)
. (63)

In general, a necessary condition for resonance to occur is that |M| = |1/R|.
For a single turning point the reflection coefficient is R = exp(iπ/2), so that the
upstream-propagating wave is totally reflected at the turning point. This π/2 phase
jump between incident and reflected waves is of course characteristic of a ray caustic,
and can be derived by considering an inner region around the turning point in which
the wave amplitude A0(X) satisfies Airy’s equation in a familiar way – see Rienstra &
Hirschberg (1999) for details. The necessary condition for resonance in this particular
case is that the modulus of M be equal to unity.

Once the parameters which give |M| = 1 have been determined, the phases in (63)
are matched by an infinite set of values for ε as follows. If M = eiθ , then from (63)

ε =

∫ Xf

Xt

[µ−(y)− µ+(y)]dy

−θ − 1
2
π± 2jπ

, j = 0, 1, . . . . (64)

Each value of ε corresponds to a different duct shape, with ε being a measure of the
axial slope of the duct walls, and each of these ducts will exhibit resonance in the
parameter ranges which give |M| = 1.

If there is more than one cut-on mode upstream of the fan, then (61) becomes a
matrix equation with P± and R diagonal matrices of order n, where n is the number
of cut-on modes. For the matrix equation the condition for resonance requires that
the matrix [I −MP+(P−)−1R] be singular. Generally multiple cut-on modes occur at
frequencies higher than those for which flutter typically occurs, and this regime will
therefore not be considered further.

5. Results
The duct shape for the calculations is that used by Rienstra (1999), a CFM56-

inspired turbofan engine, but with lengths non-dimensionalized here using the average
duct radius at the fan. The duct is defined by

R2(X) = 1.309

{
1.073− 0.198

(
1− X

L

)2

+ 0.109 exp

(
−11X

L

)}
, (65)

R1(X) = max

0, 1.309

0.689−
√

0.055 + 1.131

(
1− X

L

)2


 , (66)

06X6L, L = 2.619,

and is shown in figure 5(a). A specified cross-sectional mass flux πF and stagnation
enthalpy E = 2.5419 define the axial Mach number profile. This is shown in figure
5(b) for F = 0.5 and F = 0.65.

Fan flutter generally occurs for low-order azimuthal modes, and so the existence
of acoustic resonance was investigated for values of m = 2, 3, 4, 5. For each value of
m, frequency ranges across which single and double turning points arise, and those
which give a single mode cut on along the length of the duct, were obtained. These
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Figure 5. (a) Duct shape used in calculations; (b) variation in Mach number Mx along the duct
for F = 0.65 (Mf

x = 0.4015) (solid line) and F = 0.5 (Mf
x = 0.3089) (dashed line).

frequency bands are given in figure 6 and show that the frequencies increase with
increasing mode number m.

The actuator disc reflection coefficient M appearing in (60) is a function of R2(Xf),
R1(Xf),M

f
x , ω,Mb and MΩ . The first three of these parameters are fixed for a given

duct shape and axial mass flux. This leaves three free parameters which can be
adjusted to satisfy the necessary resonance condition |M| = 1. Using the frequency
ranges in figure 6, planes in (ω,Mb,MΩ) parameter space are calculated which satisfy
this condition, and thus potentially give rise to acoustic resonance. Calculations were
carried out for swirl Mach numbers in the range MΩ = 0.15− 0.65, and the solution
planes are shown in figure 7. Several features are to be noted, the first being that for
a fixed value of swirl Mach number MΩ , higher values of the fan rotational Mach
number Mb are required in order to satisfy the resonance condition as the frequency
is increased in each band, and this increase is more pronounced for smaller values
of m. As m is increased the planes lie at successively lower values of Mb, so that
the minimum value of Mb satisfying the resonance condition occurs for the lowest
frequency in the range for m = 5, and when MΩ = 0.65. (In the calculation of the
matrix M , results were found to converge when four or more modes were included.)
Changes in mass flux, or axial Mach number, are found to alter the frequency ranges
for which the single turning points occur. Lower values of mass flux shift the frequency
bands to higher values (and vice versa). The linear relationship, evident in figure 7,
between ω and Mb is changed only very slightly. This is shown in figure 8 where the
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Figure 6. Frequency ranges for which there exists a single cut-on mode. Frequencies which produce
a single turning point are shown by the grey lines, and frequencies for which the mode is cut
on along the entire length of the duct are shown by the black lines. Two turning points occur
in the short intermediate-frequency range. To the left of the grey lines all modes are cut off, and
to the right of the black lines there are at least two cut-on modes at some point along the duct.
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Figure 7. Solution planes which satisfy the resonance condition |M| = 1. Frequency ranges
correspond to the case of a single cut-on mode, with a single turning point at some axial location.
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x = 0.4015.)

gradients of the resonance planes for Mf
x = 0.3089 and Mf

x = 0.4324 are almost the
same, and the planes are almost coincident where the frequency ranges overlap.

The matching of phases in the resonance condition (63) is satisfied by the set of
values of ε given in (64). Figure 9 shows the values of ε which satisfy this condition
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Figure 9. Values of ε which match the phase of M in order to satisfy the resonance condition
exactly, from (64). m = 4, MΩ = 0.4. Solid lines are for j = 1, . . . 10, dashed line is for j = 50.

for the case when m = 4, MΩ = 0.4. It can be seen that for larger values of ε there
are rather few discrete frequencies within the practical range for which the resonance
condition is completely satisfied. As ε decreases, however, resonance is seen to occur
at many more frequencies. From these results it is suggested that for larger values
of ε the occurrence of resonance would be reduced, but for aerodynamic reasons
aeroengine ducts are always likely to have small values of ε, and so resonance would
be likely to occur over a wide range of frequencies.

These results can be extended to include the other cases of reflection due to double
turning points, and reflection at the open end of the duct. In the double turning
point case energy can ‘leak’ across the cut-off region, because, although a single
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cut-off mode carries precisely zero energy, two cut-off modes propagating in opposite
directions lead to a non-zero cross-term in the time-average energy flux. An expression
for the reflection coefficient at the turning point nearest to the fan can be derived by
considering an inner region around each turning point. In each inner region the wave
amplitude A0(X) satisfies Airy’s equation in the same way as for the case of a single
turning point, giving the expression

R =
K + eiπ/2

1 +Keiπ/2
, (67)

with

K =
1

4

(
1− Seiπ/2

S + e−iπ/2

)
exp

(
2iω

ε

∫ X2

X1

σ(y)

C0(y)(1−Mx(y)2)
dy

)
, (68)

where S is the reflection coefficient at the open end of the duct, and the turning points
are located at X1 and X2 (i.e. the cut-off region is between X = X1 and X2). Since
σ is purely imaginary in a cut-off region this shows how the energy flux across the
cut-off region decreases exponentially with the length of the region.

If the cut-off region between the two turning points is long enough, then the
behaviour is very similar to that of the single turning point case. However, as the
length of the cut-off region decreases more energy is able to leak across, and the
behaviour becomes comparable to the completely cut-on case. When a mode is cut
on all the way from the inlet to the fan, the upstream-propagating mode must be
reflected at the open end of the duct with a particular (complex) reflection coefficient
in order for resonance to occur. The reflection coefficients at the end of a cylindrical
duct carrying mean flow have been obtained using the Wiener–Hopf technique (as in
Levine & Schwinger 1948; Homicz & Lordi 1975; and Peake 1995), and are given in
Appendix A. (Note that the slowly varying intake is assumed to be parallel at the
intake in order to be able to determine analytical expressions for these coefficients.)
Since we consider a thin leading edge at the inlet lip of the duct no vorticity waves
are generated from the scattering of the incident acoustic wave. In practice, however,
vorticity generation due to separation at the lip may be induced, which in turn may
generate an upstream-propagating wave when it is incident at the fan. However,
the acoustic resonance described here is able to account for acoustic resonance
phenomena observed in practice. Figure 10 shows the magnitude of the reflection
coefficients for the velocity potential in the frequency range where a single mode is
cut on all along the duct. It is seen that the reflection coefficients have magnitude less
than unity, and decrease rapidly with increasing frequency. Hence, the existence of
pure acoustic resonance relies on the energy which is lost at the open end of the duct
being replaced by energy extracted from the fan and mean flow across the actuator
disc to sustain it. Therefore it is found that resonance occurs for a much smaller
range of parameters than for the single turning point case. Parameter ranges where
the resonance condition is found to be satisfied for m = 5 are shown in figure 11. In
this case higher values of Mb and MΩ are required in order to give rise to resonance
compared to the case of reflection at a turning point.

So far it has been assumed that the swirling-flow region extends indefinitely down-
stream of the fan. In fact, in real systems, this region is foreshortened by the presence
of a stator (a row of stationary blades) which acts to straighten the exit flow. This
system can be modelled by two actuator discs to represent the fan and the stator.
This divides the duct into three separate flow regions: regions 1 and 2 are as for the
single actuator disc model, except that the region of swirling flow (region 2) is now
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Figure 10. Modulus of reflection coefficients for the velocity potential at the open end of the duct
in the frequency range where there is a single mode cut on along the entire length of the duct.
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Figure 11. Parameters satisfying the resonance condition when m = 5 and when the up-
stream-propagating mode is reflected at the open end. Lines correspond to different values of
MΩ from 0.675 to 0.825 in steps of 0.025. (Ml

x = 0.3900,Mf
x = 0.4015.)

confined to a finite length L of the duct, where L is the gap between the fan and
the stator. Upstream-propagating modes are now also assumed to be present in this
region. In the third flow region, behind the stator there is uniform axial steady flow
and zero swirl with downstream-propagating acoustic and vorticity perturbations.
The formulation of this problem is outlined in Appendix B.

The boundary condition imposed by the stator is found to have little significant
effect on the results obtained for the fan-only model. This can be seen in figure 12,
where values of Mb which satisfy the resonance condition have been calculated for
different values of L. This figure is for m = 5 and MΩ = 0.38, and shows that the
fan–stator gap has to be very small before any real differences occur. For certain
parameter ranges, however, a set of solutions, not present in the results from the
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Figure 12. Effect of presence of stator for m = 5, MΩ = 0.38, Mf
x = 0.4015. Circles denote the results

from the single actuator disc model. For the double actuator disc model: solid line: L = 0.375,
dashed line: L = 0.25, dash-dot line: L = 0.125.

fan-only model, is found to exist. Figure 13 is a plot of (ω,Mb, log |M|) for m = 2,
MΩ = 0.38 which shows the two families of solutions. At values of Mb close to 0.9 we
see the ‘high-speed’ resonance observed in the single actuator disc results. In addition
to this there is another set of lower values of Mb which satisfy the resonance condition
when the stator is introduced. Figure 14 shows values of Mb satisfying the resonance
condition for different values of L. It is seen that, as the fan–stator gap increases,
the frequency range over which this ‘low-speed’ resonance occurs narrows. This set of
resonance solutions is found to disappear for values of L greater than about 2.0.

6. Discussion
A theoretical model has been developed to study the existence of pure acoustic

resonance in aeroengines. The model incorporates a slowly varying duct to represent
the intake and includes a swirling-flow region behind the fan, with the fan modelled
by an actuator disc.

Slow variations in the cross-sectional area are shown to give rise to turning points
in the intake where an acoustic mode changes from being purely cut on to cut off,
and vice versa. Discrete bands of frequency for which there is a single cut-on mode
at the fan and a single turning point at some location along the duct occur, and the
frequency ranges vary with circumferential mode number m. It has been shown that
swirling flow behind the fan can cut off acoustic modes which are cut on upstream of
the fan, and gives rise to the possibility of the incident cut-on mode being reflected
at the fan face. If there is a turning point upstream, then an upstream-propagating
mode is totally reflected at this point. For special parameter combinations, multiple
reflection of acoustic modes between a turning point and the fan can occur, thus
trapping acoustic modes within the duct, leading to pure acoustic resonance.

Two families of parameters which satisfy the condition for resonance were found.
The first set of solutions occurs for fairly high values of fan rotational Mach number
Mb, and exists with or without the presence of a stator row behind the fan. This set
of solutions is largely independent of the fan–stator gap. Conversely, the second set
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Figure 13. Plot of log |M| as a function of ω and Mb for m = 2, MΩ = 0.38, Mf
x = 0.4015. Values

of |M| < 1 are black lines and values of |M| > 1 are grey lines. The resonance condition is satisfied
by parameters on the bold black line dividing the two regions.

of solutions is found to occur only when there exists a finite gap between the fan and
the stator row. In this case the resonance condition is satisfied for smaller values of
Mb, and disappears when the gap exceeds some critical value.

The results shown are very general, in that no relationship between fan speed,
swirl Mach number and axial mass flux has been assumed. In practical cases there
would be some relationship between Mb,MΩ and Mx (for instance the camber angle
of the fan blades plays a role in the degree of swirl generated behind the fan and
the mass flow rate is related to fan speed). For real test cases these relationships
would be identified from measured data, and would depend on the particular fan and
duct under investigation. Given this information resonance conditions could then be
expressed solely in terms of, say, fan speed (Mb) and frequency, thus reducing the
number of parameters in the problem. In the general form, however, it is possible
to identify cases where the occurrence of acoustic resonance in the duct might be
suppressed. This could be achieved by identifying the ‘best’ duct shape to minimize
the effect of the turning points, or conceiving in what way the operating conditions
could produce a (Mb,MΩ,Mx) relationship which lies away from the resonance planes.

Only hard-walled ducts give rise to the occurrence of turning points, so that if
the duct is lined completely with an acoustic liner the mechanism for reflection of
acoustic waves at a turning point is removed, leaving only reflection at the open end
of the duct as a means of generating acoustic resonance. However, it is generally
impractical to line the whole of an aeroengine intake duct, but lining a section of the
intake may have some attenuation effect on the resonant acoustic modes.

This work is the first step towards understanding a physical mechanism which
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Figure 14. Parameter curves satisfying the resonance condition which arise from the inclusion of the
stator in the model. m = 2, MΩ = 0.38, Mf

x = 0.4015. Solid line: L = 0.25, dashed line: L = 0.375,
dash-dot line: L = 0.5, dotted line: L = 1.0.

could be associated with the onset of acoustic instabilities in aeroengine intakes,
which can generate significant practical problems with the advent of the increasingly
wider range of conditions over which aeroengines are required to operate. It has been
shown that pure acoustic resonance, arising from the coupling of the intake flow, fan
motion and swirling flow downstream of the fan, can be sustained in the inlet duct,
and we believe that this may lead to the onset of instabilities.

The work described in this paper is supported by a research grant from EPSRC,
reference GR/L80317. The authors would also like to acknowledge useful discussions
with Dr A. B. Parry and R. V. Brooks.

Appendix A. Reflection coefficients at open end of duct
Consider an incident cut-on mode which propagates upstream in a cylindrical duct

of radius rt, carrying a uniform axial mean flow with Mach number Mx. At the open
end the incident potential field is given by

φi = exp(iωt− imθ − ik−mnx)Jm(j ′mnr/rt), (A 1)

where j ′mn is the nth zero of J ′m(x) (the prime denoting differentiation with respect to
argument) and the axial wavenumber k−mn is defined by

k−mn =
−k0Mx −

√
k2

0 − j ′2mnβ2/r2
t

β2
, (A 2)

where β2 = 1−M2
x and k0 = ω/C0.

The field scattered by the lip is

φ =

N∑
s=1

Rs exp(iωt− imθ − ik+
msx)Jm(j ′mnr/rt), (A 3)
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with

k+
ms =

−k0Mx +
√
k2

0 − j ′2msβ2/r2
t

β2
, s = 1, . . . N, (A 4)

where N is the highest-order radial mode to be cut on. This problem was first solved
by Levine & Schwinger (1948), and further work since then has included Homicz &
Lordi (1975) and Peake (1995). The results presented in this appendix can be obtained
by a straightforward manipulation of equation (11) in Peake (1995).

The reflection coefficients Rs are given by

Rs =
K+(k+

ms)K−(k−mn)j ′2ms[γ+(k+
ms)]

2[γ−(k−mn)]2Jm(j ′mN)

(k+
ms − k−mn)(m2 − j ′2ms)(k+

msβ
2 +Mxk0)Jm(j ′ms)

, (A 5)

where

[γ±(k)]2 = β2

[
k +

Mxk0

β2
± k0

β2

]
, (A 6)

K±
(
k − Mxk0

β2

)
=

J±(k)

N∏
s=1

(k − k∓ms)
(k ± i)N−1/2(−2rtβ)1/2(k ± k0/β2)

, (A 7)

J±(k) =
√J(k) exp

[
± 1

2πi

∫ ∞
−∞

lnJ(ξ)

ξ − k dξ

]
, (A 8)

J(k) =
(k2 + 1)NK

′
m(γ̃rt)I

′
m(γ̃rt)[−2rtβ

√
k2 + 1]

N∏
s=1

(k − k−ms)(k − k+
ms)

, (A 9)

γ̃ = β

√
k2 − k2

0

β4
, (A 10)

and the integral in (A 8) is to be interpreted as a Cauchy principal value. The square
root in (A 10) is defined by inserting branch cuts in the complex k-plane running from
±k0/β

2 to infinity through the upper and lower half-planes respectively, and with γ̃
real and positive as k → ±∞. The relationship between the functions K(k) and J(k)
has been chosen in such a way as to facilitate numerical evaluation of the integral in
(A 8), so that for instance J(ξ)→ 1 as ξ → ±∞ and J(ξ) is free of zeros on the real
ξ-axis.

Appendix B. Twin actuator disc model for rotor–stator pair
For the twin actuator disc model, two actuator discs are placed within the duct

to represent the fan (or rotor) and the stator. This divides the duct into three flow
regions. In the first region, the slowly varying intake, the flow field is the same as for
the single actuator disc model. In the second, swirling flow, region behind the fan, the
flow field is derived from the same potential functions as for the single actuator disc
case. This is expressed in terms of four sets of unknown constants Ap

+

n , A
p−
n , A

l
n and

Arn, to represent upstream- and downstream-propagating acoustic-type modes and the
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two branches of the vorticity-dominated modes. Thus at the fan location (x = xf)

u(2)
r =

∑
τ

∞∑
n=1

Aτn

{
∂φτn
∂r

+ Rτn

}
, (B 1)

u
(2)
θ =

∑
τ

∞∑
n=1

Aτn

{−imφτn
r

+ Tτ
n

}
, (B 2)

u(2)
x =

∑
τ

∞∑
n=1

Aτn{−ikτnφ
τ
n}, (B 3)

p(2) =
∑
τ

∞∑
n=1

Aτn{−iΛτnφ
τ
n}, (B 4)

with a factor exp{i(ωt − mθ)} understood throughout, and τ denoting one of p+, p−,
l and r.

∑
τ is used to denote the sum over the modes p+, p−, l and r. At the stator

location (x = xs) the solutions are as above but multiplied by a factor exp(−ikτL),
where L = xs − xf is the non-dimensional distance between the fan and the stator.

In the third region, behind the stator, the steady flow is purely axial with the same
axial Mach number as that just upstream of the fan, and the unsteady flow field
consists of downstream-propagating acoustic and vorticity modes. The acoustic field
is expressed in terms of the same Bessel functions as appeared in region 1, so that

φ(3) =

∞∑
n=1

BdnCm(αnr) exp(iωt− imθ − ik+
n (x− xf)). (B 5)

The purely convected vorticity field with velocity components (ax, ar, aθ) can also be
written in terms of Bessel functions (see Golubev & Atassi 1995). If

ar(r) = AJm(βr) + BYm(βr), (B 6)

where A and B are arbitrary constants, then the boundary conditions ar(rh) = ar(rt) =
0 mean that the radial eigenvalues β must satisfy the relation

Jm(βrt)Ym(βrh)− Jm(βrh)Ym(βrt) = 0. (B 7)

The vorticity field can then be expressed as

(ax, ar, aθ) =

∞∑
n=1

(iAxn, A
r
n, A

θ
n)

{
Jm(βnr)− Jm(βnrh)

Ym(βnrh)
Ym(βnr)

}
× exp(iωt− imθ − ikx(x− xf))

=

∞∑
n=1

(iAxn, A
r
n, A

θ
n)Gm(βnr) exp(iωt− imθ − ikx(x− xf)), (B 8)

where kx = ω/U
f
0 is the convected wavenumber. However, the vorticity field must

satisfy ∇ · a = 0, so that one of the constants can be eliminated through setting

aθ = −−ir

m

{
∂ar

∂r
+
ar

r
− ikxax

}
. (B 9)

The boundary conditions at the fan are the same as in the single actuator disc
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problem (equations (31)–(34)), while the corresponding conditions imposed at the
stator are

Mf
xp

(2)

C0

+ ρ0u
(2)
x =

Mf
xp

(3)

C0(Xf)
+ D0(Xf)u

(3)
x , (B 10)

u(2)
r = u(3)

r , (B 11)

p(2)

ρ0

+ C0{Mf
xu

(2)
x + rMΩu

(2)
θ } =

p(3)

D0(Xf)
+ C0(Xf)M

f
xu

(3)
x , (B 12)

u
(3)
θ = 0. (B 13)

The eight boundary conditions are transformed into a set of eight matrix equations in
the same way as in the single actuator disc example. Manipulation of these equations
eliminates the unknown constants Ap

+

n , A
p−
n , A

l
n, A

r
n, B

d
n , A

x
n and Arn to again leave an

expression

Au = M̂Ad, (B 14)

which relates upstream- and downstream-propagating acoustic modes at the fan. The
necessary condition for resonance is that |M̂11| = 1 when there is just one mode cut
on.
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